WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

TRANSPORTATION RESEARCH COUNCIL

TRANSPORTATION COMMISSION

Vaughn Hubbard, Chair
William J. Kamps* ii
Richard Odebaashian*
Jarry B. Overton
Albert D. Roselli
Bernice Stein
Leo B. Sweeney
*

Research Committee

Federal Highway Administration

Paul C. Gregson, Division Administrator

Private Sector

Milton "But" Ebbers, President, Skagit Valley Trucking
Richard Ford, Managing Partner, Preston, Throgmorton, Ellis, Holman
William Franks, Vice President, Burlington Northern R.R.
Tom Geer, Project Manager, David Moore & Company, Bellevue
Lawrence Hult, Vice President, Lockheed Shipbuilding
Charles H. Knight, President, Concrete Technology
H. Carl Munson, V.P. for Strategic Planning, Boeing Co., Seattle
Michael Murphy, President, Central Pre-Mix Concrete
Richard Norman, President, Associated Sand & Gravel, Everett
John Ostronski, Public Works Director, Vancouver, WA
Richard S. Page, President, Washington Roundtable
James D. Ray, Senior Manager, IBM Company
Sudarsan Sethi, Director, Technical Services, Polycarb Inc., Cleveland, OH
Paul Tunville, General Manager, PACCAR, Technical Center, Mt. Vernon, WA

Universities

Gene L. Woodruff, Vice Provost for Research, UW
Robert V. Smith, Associate Provost for Research, Wsu
Sunnder K. Bhagat, Professor and Chair, Civil Engineering, Wsu

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

Duane Berenson, Secretary
A.D. Andrews, Deputy Secretary
James P. Toohey, Assistant Secretary for Planning, Research and Public Transportation

WASHINGTON STATE TRANSPORTATION COMMISSION RESEARCH COMMITTEE

Ward Q. Kamps, Chair
Richard Odebaashian, Commissioner
Jerry Overton, Commissioner
Leo B. Sweeney, Commissioner

WASHINGTON DOT RESEARCH EXECUTIVE COMMITTEE

A.D. Andrews, Chair. Deputy Secretary for Transportation
E.W. Ferguson, District 4 Administrator
H.W. Panzer, Assistant Secretary for Marine Transportation
Robert C. Schuster, Assistant Secretary for Highways

WASHINGTON DOT RESEARCH TECHNICAL COMMITTEES

Highway Operations and Development
Roland Cook, Chair. District 2 Administrator
Joel Aspaaas, District 4 Project Engineer
William P. Cari, Associate Research Director
John Connal, District 1 District Operations Engineer
R.C. Darby, District 3 Maintenance & Operations Engineer
C. Sawar, Goyet Bridge/Structures Engineer
Wayne Gruen, State Traffic Engineer
Stan Moore, Operations Design Engineer
Ed Swiec, Construction Engineer - Pavement
Don Sear, District 2 Construction Engineer
Don Sprat, District 6 Maintenance Superintendent
Ken Thomas, Operations Engineer, Bellingham Public Works Department
George Tsakas, Structural Engineer, Washington State University

Materials and Product Evaluation
De Van Oven, Chair. State Construction Engineer
Kevin W. Anderson, Federal Program Manager
Jim Buss, District 2 Construction Engineer
Newton Jackson, Pavement/Skills Engineer
Steve Kammer, Assistant Professor, Civil Engineering, U. of Washington
Bob Knoke, Bridge Operations Engineer
Art Peters, Materials Engineer
Bob Sprat, District 2 Maintenance Engineer
John Sarada, Construction Engineer - Grading

Planning and Multimodal
Don Tranum, Chair, District 6 Administrator
Ron Anderson, Manager, District 6 Management Services
Ken Casavant, Professor, Washington State University
King Cupach, Director, Pierce County Transit Development
K. Gupta, Manager, Transportation Data Office
Kerr Jacobson, District 1 Public Transportation & Planning Engineer
Jerry Lenz, Manager, Multi Modal Branch
Jim Salkeld, Manager, Public Transportation
Stephen Smith, Service Planning Manager, Ferry System, Colman Dock

WASHINGTON DOT RESEARCH IMPLEMENTATION COMMITTEE

Stan Moore, Chair, Operations Design Engineer
Jack E. Hanson, Location Engineer
Dennis Ingham, Highway Maintenance Engineer
Ken Jacobson, District 1 Public Transportation and Planning Engineer
Bob Knoke, Bridge Operations Engineer
Art Peters, Materials Engineer
Ed Schect, Construction Engineer, Pavement
Gerard Smith, District 1, Assistant I-90 Construction Engineer
Bob Sprat, District 2 Maintenance Engineer

WASHINGTON DOT RESEARCH OFFICE

John Doyle, Director
William P. Carr, Associate Director
Kevin W. Anderson, Federal Program Manager
Julie Levenson, Database Coordinator
Ellen Loye, Secretary
Carl Torey, Research Administrator

WASHINGTON DOT RESEARCH LABORATORIES

District 1: Kerr Jacobson, Public Transportation and Planning Engineer
District 2: Don Sear, Location Engineering
District 3: Bob George, Assistant Location Engineer
District 4: Richard N. Coffman, Maintenance Engineer
District 5: Robert Marshack, Design Engineer
District 6: Richard Larson, Design and Planning Engineer
WASHINGTON DOT LIBRARY, Barbara Russo, Librarian.

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

WASHINGTON STATE TRANSPORTATION CENTER (TRAC) (UW and Wsu)

G. Scott Rutherford, Director
Ken Casavant, Associate Director, Wsu
Joe P. Mahoney, Associate Director, UW
Rhoose Babiak, Senior Research Engineer
Rhonda Brooks, Research Implementation Manager
Mark Hallenbeck, Senior Research Engineer
Ed McCormick, Research Engineer
Amy O'Brien, Coordinator
Beverly O'Connell, Budget Analyst
Ron Porter, Word Processing Technician
Cy Ulberg, Senior Research Engineer
Cynthia Wallace, Clark-Typist
Duane Wright, Research Aide.
This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

This report describes the construction of experimental asphalt-rubber and polymer-asphalt open-graded friction course overlays on Interstate 5 in Vancouver, Washington. A 1200 foot section of conventional open-graded pavement was included as a control section. Evaluations will be conducted over a period of three years to measure the performance of the rubber and polymer sections against the control section of conventional open-graded pavement.

Initial observations and tests show no significant differences between the control and the asphalt-rubber and polymer sections.
ASPHALT-RUBBER OPEN-GRADED FRICTION COURSE

I-5, Vancouver Vicinity

by

Keith W. Anderson
Research Specialist for Materials

Post Construction Report
WA 86-10

Prepared for
Washington State Department of Transportation
and in cooperation with
U.S. Department of Transportation
Federal Highway Administration

September, 1987
DISCLAIMER

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State or Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The Washington State Department of Transportation does not endorse products, equipment, processes or manufacturers. Trademarks or manufacturer's names appear herein only because they are considered essential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>STUDY SITE</td>
<td>1</td>
</tr>
<tr>
<td>CONSTRUCTION SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>PROBLEMS</td>
<td>3</td>
</tr>
<tr>
<td>ECONOMICS</td>
<td>4</td>
</tr>
<tr>
<td>TEST RESULTS</td>
<td>4</td>
</tr>
<tr>
<td>LONG TERM MONITORING PLAN</td>
<td>5</td>
</tr>
<tr>
<td>PHOTOGRAPHS</td>
<td>6</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>SUMMARY of PLANT, STREET, and AIR TEMPERATURES</td>
<td>3</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>PAVEMENT RUTTING/WEAR MEASUREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>FRICTION RESISTANCE MEASUREMENTS</td>
<td>4</td>
</tr>
</tbody>
</table>
ABSTRACT

This report describes the construction of experimental asphalt-rubber and polymer-asphalt open-graded friction course overlays on Interstate 5 in Vancouver, Washington. A 1200 foot section of conventional open-graded pavement was included as a control section. Evaluations will be conducted over a period of three years to measure the performance of the rubber and polymer sections against the control section of conventional open-graded pavement.

Initial observations and tests show no significant differences between the control and the asphalt-rubber and polymer sections.
INTRODUCTION

This report describes the construction of an experimental asphalt-rubber open-graded friction course overlay on I-5 in Vancouver, Washington. The asphalt-rubber overlay was chosen to replace, via a change order, a conventional open-graded overlay. The change was prompted by the desire of the District construction personnel for a pavement with greater resistance to ravelling. A 1200 foot section of conventional open-graded pavement was included as a control section. A 3000 foot section of polymer-asphalt open-graded pavement was added during construction by the District. Evaluations will be conducted to measure the performance of both the asphalt-rubber and polymer-asphalt pavements against the control section of conventional open-graded pavement.

STUDY SITE

The project begins just north of the Columbia River Bridge which connects Portland, Oregon with Vancouver, Washington and ends at the junction of SR-500 as shown on the vicinity map. The pertinent facts concerning the contract are tabulated below.

Contract Number: 3044
Contract Name: Columbia River to 39th Street
Route Number: Interstate 5
Milepost Limits: 0.28 to 2.42
Number of Lanes: 6 plus on-off collectors & ramps
Overlay Thickness: 0.06 feet (3/4 inch)
Project Engineer: Bill Pierce
Contractor: Cascade Construction Co., Portland, OR
Start of Paving: June 28, 1986
End of Paving: July 25, 1986

A schematic drawing of the location of the various pavement types is shown in Figure 1. It should be noted that an added variable was introduced into the experiment with the addition of a fog seal on certain portions of the project.
CONSTRUCTION SUMMARY

The high traffic volumes of the Vancouver-Portland corridor of I-5 necessitated that the paving operations be conducted at night or on weekends. Cascade Construction Company began paving of the asphalt-rubber mix on June 28, 1986 and completed the final paving on July 25, 1986. Air temperatures during this period ranged from 55 to 82 degrees F and there were only two weather related shutdowns, one for rain and one for low temperature. Photographs of the paving operations are included in Appendix A.

The asphalt mix was produced out of a 15,000 lb. batch plant and hauled to the project site by conventional dump trucks. The paving train normally consisted of a Blaw Knox PF 180 paver followed by three 8-10 ton Hyster tandem steel wheel vibratory rollers. An additional vibratory roller and Barber Greene 260 paver were added to the paving train when the paving schedule included more than a single lane. A tack coat of CRS-2 was applied by distributor at a rate of 0.06 to 0.09 gallons per square yard on newly placed Class G preleveling and at a rate of 0.10 to 0.12 gallons per square yard on the areas which received no preleveling. Fog seals were generally applied at the conclusion of each nights paving and consisted of CSS-1 applied at a rate of 0.05 to 0.10 (0.03 to 0.05 residual) gallons per square yard.

A total of 7012 tons of asphalt-rubber mix, 383 tons of polymer-asphalt mix, and 117 tons of conventional mix were placed...
on the project. The asphalt-rubber binder consisted of 20% recycled vulcanized rubber and 80% AR4000W asphalt cement plus enough extender oil to make the rubber compatible with the cement. The job mix design called for 7% asphalt-rubber cement content in the final mix. The asphalt-rubber was purchased from Arizona Refining Company of Phoenix, Arizona which markets the product under the trade name ARM-R-SHIELD.

The polymer-asphalt was furnished to the contractor by Asphalt Service & Supply of Denver, Colorado. This binder consisted of AC-20 paving grade asphalt rubberized with 1.2 to 2.0 percent by weight of virgin synthetic styrene-butadiene rubber. A AC-20 asphalt is roughly equivalent to a AR8000W asphalt. The polymer-asphalt cement was also added at the same job mix design binder content of 7%.

A summary of the plant and street mix temperatures and the ambient air temperatures for each days paving is shown in Table 1.

Table 1. Summary of plant, street, and air temperatures.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ASPHALT TYPE</th>
<th>AIR TEMP. DEG. F</th>
<th>ASPHALT MIX TEMP. STREET DEG. F</th>
<th>ASPHALT MIX TEMP. PLANT DEG. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/28/86</td>
<td>RUBBER</td>
<td>60 to 65</td>
<td>295, 300, 310</td>
<td>325</td>
</tr>
<tr>
<td>7/02/86</td>
<td>RUBBER</td>
<td>60 to 72</td>
<td>270, 285, 250, 275</td>
<td>315</td>
</tr>
<tr>
<td>7/07/86</td>
<td>RUBBER</td>
<td>62 to 70</td>
<td>320, 330</td>
<td>340</td>
</tr>
<tr>
<td>7/08/86</td>
<td>RUBBER</td>
<td>63 to 74</td>
<td>300, 300</td>
<td>315</td>
</tr>
<tr>
<td>7/09/86</td>
<td>RUBBER</td>
<td>58 to 67</td>
<td>290, 335</td>
<td>305</td>
</tr>
<tr>
<td>7/12/86</td>
<td>RUBBER</td>
<td>55 to 72</td>
<td>305, 305</td>
<td>330</td>
</tr>
<tr>
<td>7/22/86</td>
<td>RUBBER</td>
<td>60 to 73</td>
<td>300, 315, 320, 285</td>
<td>330</td>
</tr>
<tr>
<td>7/23/86</td>
<td>CONVENTIONAL</td>
<td>56 to 70</td>
<td>258</td>
<td>280</td>
</tr>
<tr>
<td>7/24/86</td>
<td>RUBBER</td>
<td>56 to 70</td>
<td>285, 325</td>
<td>315</td>
</tr>
<tr>
<td>7/24/86</td>
<td>RUBBER</td>
<td>58 to 82</td>
<td>295, 320</td>
<td>320</td>
</tr>
<tr>
<td>7/24/86</td>
<td>POLYMER</td>
<td>58 to 82</td>
<td>270, 275</td>
<td>300</td>
</tr>
<tr>
<td>7/25/86</td>
<td>RUBBER</td>
<td>62 to 79</td>
<td>285, 295</td>
<td>320</td>
</tr>
</tbody>
</table>

PROBLEMS

The biggest difficulty on this project and for that matter on any project where rubber is added to the asphalt mix is determining the amount of binder in the final mix. The rubber in the binder, whether it is recycled or synthetic, clogs the filter on the extraction test apparatus used to determine the asphalt content of the mix sample. On this project quality control of the binder content was based on the computer readouts at the batch plant. Gradation specifications were controlled by periodically sampling a batch of conventional mix run through the plant specifically for this purpose. The contractor placed this special sampling batch in his recycle pile for future use.

The only other problem encountered was with aggregate gradation on the first few days of production. The problem was traced
to a stockpile which was out of specification. The situation was remedied by using the screens and bins on the plant as opposed to the cold feed out of the stockpile. Additional aggregates in the sizes missing from the original stockpile were brought in to help remedy the situation.

ECONOMICS

The original bid price for the conventional open-graded mix was $36.80 per ton. The change order price for the asphalt-rubber mix was $55.56 per ton. The difference in price, $18.76 per ton, represents an increase of 51% over the conventional mix. Translating this into cost-effectiveness terms it means that the rubberized mix must perform 51% better than the conventional mix. For example, if 8 years is the normal service life of a conventional open-graded pavement, then the asphalt-rubber and polymer-asphalt pavements must last about 12 years to be cost-effective.

TEST RESULTS

The work plan for the experimental feature calls for periodic measurements of pavement rutting/wear, pavement condition, and friction resistance.

Rutting/Wear

Post construction measurements of rutting/wear are shown in Table 2. All measurements are made in the outside (driving) lane.

Table 2. Pavement rutting/wear measurements.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SECTION</th>
<th>RUTTING/WEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.P. 2.29 SB</td>
<td>CONTROL</td>
<td>NONE</td>
</tr>
<tr>
<td>M.P. 1.05 SB</td>
<td>POLYMER-ASPHALT</td>
<td>NONE</td>
</tr>
<tr>
<td>M.P. 1.00 NB</td>
<td>ASPHALT-RUBBER</td>
<td>1/16 inch</td>
</tr>
<tr>
<td>M.P. 2.20 NB</td>
<td>ASPHALT-RUBBER</td>
<td>1/16 inch</td>
</tr>
</tbody>
</table>

Pavement Condition

A visual inspection of the project three months after its completion revealed an absence of any defects which would lower the initial pavement condition survey rating below the 100 or zero defect level. In fact, the four pavement sections; (1) control, (2) polymer-asphalt, (3) asphalt-rubber with fog seal, and (4) asphalt-rubber without fog seal could not be differentiated from each other by visual inspection.
Friction Resistance

Friction resistance measurements were conducted on September 3, 1986 following construction and again on June 17, 1987. Results from both series of tests are shown in Table 3.

Table 3. Friction resistance measurements.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SEPTEMBER 3, 1986</th>
<th>RANGE (FN)</th>
<th>AVERAGE (FN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>43.2 to 44.6</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>POLYMER-ASPHALT</td>
<td>35.6 to 44.6</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>ASPHALT-RUBBER w/Fog Seal</td>
<td>36.2 to 44.6</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td>ASPHALT-RUBBER w/o Fog Seal</td>
<td>35.3 to 45.9</td>
<td>41.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>JUNE 25, 1987</th>
<th>RANGE (FN)</th>
<th>AVERAGE (FN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>46.4 to 48.2</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td>POLYMER-ASPHALT</td>
<td>46.1 to 49.5</td>
<td>47.7</td>
<td></td>
</tr>
<tr>
<td>ASPHALT-RUBBER w/Fog Seal</td>
<td>45.0 to 52.1</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>ASPHALT-RUBBER w/o Fog Seal</td>
<td>39.9 to 50.5</td>
<td>46.6</td>
<td></td>
</tr>
</tbody>
</table>

The post-construction friction resistance results are somewhat lower than generally experienced on new asphalt pavements, but are well within the normal range for open-graded pavements. The open-graded pavements are designed to have slightly higher asphalt contents than dense graded pavements to provide thicker film thicknesses on the aggregate particles for added resistance to ravelling. The fog seals, which are applied as a standard practice to the open-graded pavements, also decrease the initial friction resistance of the pavements until traffic has an opportunity to wear off the asphalt films on the aggregate. This change is illustrated by the second series of tests performed on June 17, 1987.

LONG TERM MONITORING PLAN

The work plan for this experimental feature calls for rutting/wear, pavement condition, and friction resistance measurements for a period of three years which would be 1989. The monitoring will be extended if at the end of this period the pavement sections are still performing in an equivalent fashion. It would not be unreasonable to expect that a monitoring period of 8 to 12 years might be needed to draw the final conclusions on this comparison.
Condition of roadway before overlay. View is looking north at the southbound lanes from the Evergreen Blvd. structure at M.P. 0.85.

Placement of conventional open-graded Class D asphalt pavement. Location is the southbound outside lane at M.P. 2.30.
Conventional open-graded Class D pavement in the background and asphalt-rubber open-graded Class D pavement in the foreground. Person on shoulder marks dividing line. Location is the southbound lane at M.P. 2.20.

Completed asphalt-rubber Class D pavement. View is looking north at the southbound lanes at M.P. 0.70. The structure is Evergreen Blvd.